Organic matter transformations in the upper mesopelagic zone of the North Pacific: Chemical composition and linkages to microbial community structure

نویسندگان

  • Karl Kaiser
  • Ronald Benner
چکیده

[1] Transformation processes in the euphotic and mesopelagic zones are of crucial importance to the biological pump and global elemental cycles. In this study, elemental stoichiometries and chemical compositions of particulate and dissolved organic matter (DOM) were investigated in the euphotic and upper mesopelagic zones of the North Pacific Subtropical Gyre. The distributions of bacterial biomarkers (D-amino acids, muramic acid) and major biochemicals (amino acids, neutral sugars, amino sugars) indicated a direct link between microbial community structure and the biochemical composition of organic matter. Bacteria were major sources of organic C, N, and P in the upper mesopelagic zone. Heterotrophic bacterial transformations were important in the formation of biorefractory organic matter that is retained in the ocean on timescales of decades to millennia. Net removal rates for dissolved organic carbon (DOC), dissolved organic nitrogen (DON), and major biochemicals were calculated for the upper mesopelagic zone (110–300 m). Dissolved hydrolyzable amino acids, neutral sugars, and amino sugars comprised 5–18% of DOC and 4–5% of DON removed in the upper mesopelagic zone, indicating these biochemicals were important components of semilabile DOM. Net removal rates of neutral sugars were 3–10 times higher than net removal rates of amino acids and amino sugars. This suggested that neutral sugars were the most reactive component among the three classes of biochemicals. Depth-integrated net DOC removal rates indicated that DOC comprised 19–31% of total carbon export flux in the North Pacific gyre and supplied 27–93% of bacterial carbon demand in the upper mesopelagic zone.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Prokaryotic Responses to Ammonium and Organic Carbon Reveal Alternative CO2 Fixation Pathways and Importance of Alkaline Phosphatase in the Mesopelagic North Atlantic

To decipher the response of mesopelagic prokaryotic communities to input of nutrients, we tracked changes in prokaryotic abundance, extracellular enzymatic activities, heterotrophic production, dark dissolved inorganic carbon (DIC) fixation, community composition (16S rRNA sequencing) and community gene expression (metatranscriptomics) in 3 microcosm experiments with water from the mesopelagic ...

متن کامل

Interactions among dissolved organic carbon, microbial processes, and community structure in the mesopelagic zone of the northwestern Sargasso Sea

At the Bermuda Atlantic Time-Series Study (BATS) site, the field observations of dissolved organic carbon (DOC) dynamics indicate that seasonally produced "semilabile" DOC is resistant to rapid microbial degradation in the surface waters but available for microbial remineralization once it is delivered into the mesopelagic zone after convective overtum. In this study, we employed an experimenta...

متن کامل

The radiocarbon signature of microorganisms in the mesopelagic ocean.

Several lines of evidence indicate that microorganisms in the meso- and bathypelagic ocean are metabolically active and respiring carbon. In addition, growing evidence suggests that archaea are fixing inorganic carbon in this environment. However, direct quantification of the contribution from deep ocean carbon sources to community production in the dark ocean remains a challenge. In this study...

متن کامل

Increased ocean carbon export in the Sargasso Sea linked to climate variability is countered by its enhanced mesopelagic attenuation

Photosynthetic CO2 uptake by oceanic phytoplankton and subsequent export of particulate organic carbon (POC) to the ocean interior comprises a globally significant biological carbon pump, controlled in part by the composition of the planktonic community. The strength and efficiency of this pump depends upon the balance of particle production in the euphotic zone and remineralization of those pa...

متن کامل

Mesopelagic N2 Fixation Related to Organic Matter Composition in the Solomon and Bismarck Seas (Southwest Pacific)

Dinitrogen (N2) fixation was investigated together with organic matter composition in the mesopelagic zone of the Bismarck (Transect 1) and Solomon (Transect 2) Seas (Southwest Pacific). Transparent exopolymer particles (TEP) and the presence of compounds sharing molecular formulae with saturated fatty acids and sugars, as well as dissolved organic matter (DOM) compounds containing nitrogen (N)...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012